Background and purpose: Gender differences in inflammation are well described, with females often showing more robust, oestrogen-associated responses. Here, we investigated the influence of gender, oestrogen and the anti-inflammatory protein annexin A1 (AnxA1) on lipopolysaccharide (LPS)-induced leukocyte-endothelial cell interactions in murine cerebral and mesenteric microvascular beds.
Experimental approach: Intravital microscopy was used to visualize and quantify the effects of LPS (10 μg·per mouse i.p.) on leukocyte-endothelial interactions in male and female wild-type (WT) mice. The effects of ovariectomy ± oestrogen replacement were examined in WT and AnxA1-null (AnxA1(-/-) ) female mice.
Key results: LPS increased leukocyte adherence in the cerebral and mesenteric beds of both male and female WT mice; females showed exacerbated responses in the brain versus males, but not the mesentery. Ovariectomy further enhanced LPS-induced adhesion in the brain but not the mesentery; its effects were reversed by oestrogen treatment. OVX AnxA1(-/-) mice also showed exaggerated adhesive responses to LPS in the brain. However, these were unresponsive to ovariectomy and, paradoxically, responded to oestrogen with a pronounced increase in basal and LPS-induced leukocyte adhesion in the cerebrovasculature.
Conclusions and implications: Our data confirm the fundamental role of AnxA1 in limiting the inflammatory response in the central and peripheral microvasculature. They also (i) show that oestrogen acts via an AnxA1-dependent mechanism to protect the cerebral, but not the mesenteric, vasculature from the damaging effects of LPS and (ii) reveal a paradoxical and potentially toxic effect of the steroid in potentiating the central response to LPS in the absence of AnxA1.
© 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.