Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires

ACS Nano. 2012 Sep 25;6(9):8105-13. doi: 10.1021/nn3027112. Epub 2012 Aug 28.

Abstract

A comprehensive understanding of the type of modes and their propagation length for surface plasmon polaritons (SPPs) in gold nanowires is essential for potential applications of these materials as nanoscale optical waveguides. We have studied chemically synthesized single gold nanowires by a novel technique called bleach-imaged plasmon propagation (BlIPP), which relies on the plasmonic near-field induced photobleaching of a dye to report the SPP propagation in nanowires. We observed a much longer propagation length of 7.5 ± 2.0 μm at 785 nm compared to earlier reports, which found propagation lengths of ~2.5 μm. Finite difference time domain simulations revealed that the bleach-imaged SPP is a higher order m = 1 mode and that the lowest order m = 0 mode is strongly quenched due to the loss to the dye layer and cannot be resolved by BlIPP. A comparative assessment of BlIPP with direct fluorescence imaging furthermore showed that the significant difference in propagation lengths obtained by these two techniques can be attributed to the difference in their experimental conditions, especially to the difference in thickness of the dye layer coating on the nanowire. In addition to identifying a higher order SPP mode with long propagation length, our study infers that caution must be taken in selecting indirect measurement techniques for probing SPP propagation in nanoscale metallic waveguides.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Gold / chemistry*
  • Light
  • Materials Testing / methods*
  • Metal Nanoparticles / chemistry*
  • Metal Nanoparticles / ultrastructure*
  • Particle Size
  • Scattering, Radiation
  • Surface Plasmon Resonance / methods*

Substances

  • Gold