To depict the largest picture of a core promoter interactome, we developed a one-step DNA-affinity capture method coupled with an improved mass spectrometry analysis process focused on the identification of low abundance proteins. As a proof of concept, this method was developed through the analysis of 230 bp contained in the 5'long terminal repeat (LTR) of the human immunodeficiency virus 1 (HIV-1). Beside many expected interactions, many new transcriptional regulators were identified, either transcription factors (TFs) or co-regulators, which interact directly or indirectly with the HIV-1 5'LTR. Among them, the homeodomain-containing TF myeloid ectopic viral integration site was confirmed to functionally interact with a specific binding site in the HIV-1 5'LTR and to act as a transcriptional repressor, probably through recruitment of the repressive Sin3A complex. This powerful and validated DNA-affinity approach could also be used as an efficient screening tool to identify a large set of proteins that physically interact, directly or indirectly, with a DNA sequence of interest. Combined with an in silico analysis of the DNA sequence of interest, this approach provides a powerful approach to select the interacting candidates to validate functionally by classical approaches.