Growth and analysis of C nanotubes on ceramic polymer-additives

J Nanosci Nanotechnol. 2012 Jun;12(6):4786-97. doi: 10.1166/jnn.2012.4889.

Abstract

C nanotubes are synthesized by catalytic route on ceramic supports (Al2O3, MgO and CaO), usually utilized for polymer reinforcing/flame-retardancy, aiming at nanotube-based hybrid preparation. Chemical vapor deposition is carried out in i-C4H10+H2 atmosphere over 17 wt% Fe-catalysts upon different conditions. In order to clarify the influence of support material, calcination (450 degrees C or 750 degrees C) and reduction temperature (500 degrees C or 600 degrees C) of the catalysts, and synthesis temperature (600 degrees C or 700 degrees C), catalysts utilized and nanotubes obtained are systematically investigated by the use of several analysis techniques (electron microscopy, X-ray diffraction, thermo-gravimetry and Raman spectroscopy). The results obtained show that, in the considered range of variation, support material is the most influential parameter. The most catalytically active alumina supports allow achieving higher yields, but involve larger metallic inclusions and lower crystalline quality. Remaining supports behave oppositely. The reasons for such differences are discussed in the light of the current assessments on the nanotube growth and the results obtained are compared with those available in literature for similar catalysts.

MeSH terms

  • Ceramics / chemistry*
  • Crystallization / methods*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanotubes, Carbon / chemistry*
  • Nanotubes, Carbon / ultrastructure*
  • Particle Size
  • Polymers / chemistry*
  • Surface Properties

Substances

  • Macromolecular Substances
  • Nanotubes, Carbon
  • Polymers