The use of metal-organic framework (MOF) thin films to detect water vapor across a wide concentration range is demonstrated using MOF-functionalized quartz surface acoustic wave (SAW) sensors. A range of 3-14,800 ppmv was obtained with thin films of the MOF Cu(3)(benzenetricarboxylate)(2) (Cu-BTC) deposited by an automated layer-by-layer method. Devices coated by a manual technique demonstrated sensitivity from 0.28 to 14,800 ppmv, the limit of our test system. This exceeds the sensitivity of many commercially available sensors. Cu-BTC layers were covalently bonded directly to the silicon oxide surface, allowing devices to be heated beyond 100 °C to desorb water adsorbed in the pores without decomposition, thereby regenerating the sensors. Sensor response as a function of coating thickness was evaluated, showing that the SAW sensor response is bounded by maximum and minimum layer thicknesses. Computer simulation of H(2)O uptake shows a multistep adsorption isotherm defined by initial adsorption at open Cu-sites, followed by pore-filling and finally full saturation. Modeling and experimental results are consistent. Calculated uptake values suggest an efficient adsorption of H(2)O by Cu-BTC. These results provide the first convincing evidence that MOF functionalization of compact sensing technologies such as SAW devices and microcantilevers can compete with state-of-the art devices.