In addition to cancer surveillance, p19(Arf) plays an essential role in blocking signals stemming from platelet-derived growth factor receptor β (Pdgfrβ) during eye development, but the underlying mechanisms have not been clear. We now show that without Arf, pericyte hyperplasia in the eye results from enhanced Pdgfrβ-dependent proliferation from embryonic day 13.5 (E13.5) of mouse development. Loss of Arf in the eye increases Pdgfrβ expression. In cultured fibroblasts and pericyte-like cells, ectopic p19(Arf) represses and Arf knockdown enhances the expression of Pdgfrβ mRNA and protein. Ectopic Arf also represses primary Pdgfrβ transcripts and a plasmid driven by a minimal promoter, including one missing the CCAAT element required for high-level expression. p19(Arf) uses both p53-dependent and -independent mechanisms to control Pdgfrβ. In vivo, without p53, Pdgfrβ mRNA is elevated and eye development abnormalities resemble the Arf (-/-) phenotype. However, effects of p53 on Pdgfrβ mRNA do not appear to be due to direct p53 or RNA polymerase II recruitment to the promoter. Although p19(Arf) controls Pdgfrβ mRNA in a p53-dependent manner, it also blunts Pdgfrβ protein expression by blocking new protein synthesis in the absence of p53. Thus, our findings demonstrate a novel capacity for p19(Arf) to control Pdgfrβ expression by p53-dependent and -independent mechanisms involving RNA transcription and protein synthesis, respectively, to promote the vascular remodeling needed for normal vision.