Biochar is a carbon rich by-product produced from the thermal decomposition of organic matter under low oxygen concentrations. Currently many researchers are studying the ability of biochar to improve soil quality and function in agricultural soils while sustainably sequestering carbon. This paper focuses on a novel but complimentary application of biochar - the reduced bioavailability and phytoavailability of organic contaminants in soil, specifically polychlorinated biphenyls (PCBs). In this greenhouse experiment, the addition of 2.8% (by weight) biochar to soil contaminated with 136 and 3.1 μg/g PCBs, reduced PCB root concentration in the known phytoextractor Cucurbita pepo ssp. pepo by 77% and 58%, respectively. At 11.1% biochar, even greater reductions of 89% and 83% were recorded, while shoot reductions of 22% and 54% were observed. PCB concentrations in Eisenia fetida tissue were reduced by 52% and 88% at 2.8% and 11.1% biochar, respectively. In addition, biochar amended to industrial PCB-contaminated soil increased both aboveground plant biomass, and worm survival rates. Thus, biochar has significant potential to serve as a mechanism to decrease the bioavailability of organic contaminants (e.g. PCBs) in soil, reducing the risk these chemicals pose to environmental and human health, and at the same time improve soil quality and decrease CO(2) emissions.
Copyright © 2012. Published by Elsevier B.V.