Exposure of Wistar rats to 24-h psycho-social stress alters gene expression in the inferior colliculus

Neurosci Lett. 2012 Oct 3;527(1):40-5. doi: 10.1016/j.neulet.2012.08.019. Epub 2012 Aug 17.

Abstract

Recently, we have demonstrated that the exposure of Wistar rats to psycho-social stress results in a transient auditory hypersensitivity. Here, to learn more about modifications occurring in auditory brainstem, we have analyzed gene expression pattern in inferior colliculus using quantitative RT-PCR. As targets, we have chosen genes associated with: neural activity (FBJ osteosarcoma viral oncogene, cFos), hypoxia (nitric oxide synthase inducible, iNos; superoxide dismutase 2, Sod2), neuroprotection (nerve growth factor beta, Ngfb; heat shock factor 1, Hsf1; heat shock protein 70, Hsp70) and inflammation (tumor necrosis factor alpha, Tnfa; tumor necrosis factor alpha receptor, Tnfar; substance P, Sp; cyclooxygenase 2, Cox2). We found that the expression of all genes was modified following stress, as compared to the controls. Immediately after stress, the number of transcripts encoding iNos, Sod2, Hsf1, Ngfb, Tnfa, Tnfar and Sp was significantly increased, suggesting possible modulation during exposure to stressor. Interestingly, we found that expression of Hsf1 and Ngfb at this particular time was left-right asymmetrical: there were more transcripts of both genes found in the left colliculi, as compared to the right colliculi. Three hours post-stress, iNos, Hsf1, Tnfa and Tnfar were still upregulated, Sod2, Ngfb and Sp went back to baseline and Cox2 was upregulated. Six hours post-stress, cFos mRNA became downregulated. The number of Hsp70 mRNA increased 24h post-stress. Except for the reduced number of cFos transcripts, expression of all other genes tested reached the baseline seven days post-stress. Presented results corroborate the concept of auditory system responding to the psycho-social stress. Post-stress changes in the IC gene expression could likely indicate shift from allostasis to homeostasis in the auditory brainstem.

MeSH terms

  • Animals
  • Female
  • Gene Expression Regulation*
  • Inferior Colliculi / metabolism*
  • Nerve Tissue Proteins / metabolism*
  • Rats
  • Rats, Wistar
  • Stress, Psychological / metabolism*
  • Tissue Distribution

Substances

  • Nerve Tissue Proteins