Umbilical cord blood (UCB) is an attractive stem cell graft option for patients who need allogeneic hematopoietic stem cell support, but lack a suitable HLA-matched donor. However, the limited number of hematopoietic progenitor cells in a single cord blood unit can lead to an increased risk of graft failure, delayed hematological recovery and prolonged immunosuppression, particularly in adult patients. Several strategies to overcome these potential limitations are being evaluated. In this review, we discuss promising ex vivo manipulations to enhance cord blood engraftment capacity such as culture of UCB cells with stimulatory cytokines and growth factors, mesenchymal cells, Notch ligand, copper chelators, prostaglandins, complement components, nicotinamide and CD26/DPPIV inhibitors. All these approaches are now in early clinical trials. However, despite the fact that several cord blood enhancement strategies have resulted in increased numbers of progenitor cells and faster neutrophil recovery, the ability of these techniques to significantly shorten engraftment time and permit the use of cord units with low numbers of total nucleated cells, or accomplish reliable engraftment with a single cord, have yet to be convincingly demonstrated. The ultimate clinical value of ex vivo cord blood expansion or manipulation has not been defined yet, and the current data do not permit predicting which technology will prove to be the optimal strategy. Nevertheless, expectations remain high that eventually ex vivo enhancement will be able to improve clinical outcomes and significantly extend the applicability of UCB transplantation.