Aims: The study reports the feasibility and efficiency of vascular endothelial growth factor (VEGF) delivery using nanoparticles synthesized from glycidyl methacrylated dextran (Dex-GMA) and gelatin for therapeutic angiogenesis.
Methods: The nanoparticles were prepared using phase separation method, and the drug release profile was determined by ELISA study. The bioactivity of VEGF-incorporated nanoparticles (VEGF-NPs) were determined using tube formation assay. A rabbit hind limb ischemia model was employed to evaluate the in vivo therapeutic effect. Blood perfusion was measured by single-photon emission computed tomography (SPECT). Vessel formation was evaluated by contrast angiography and immunohistochemistry.
Results: The nanoparticles synthesized were spherical in shape with evenly distributed size of about 130 ± 3.5 nm. The VEGF encapsulated was released in a biphase manner, with the majority of 69% released over 1-12 days. Tube formation assays showed increased tubular structures by VEGF-NP compared with empty nanoparticles and no treatment. Both free VEGF and VEGF-NP significantly increased blood perfusion compared with empty nanoparticles (both P < 0.001), but it was much higher in VEGF-NP-treated limbs (P < 0.001). Contrast angiography and immunohistological analysis also revealed more significant collateral artery formation and higher capillary density in VEGF-NP-treated limbs.
Conclusions: Dex-GMA and gelatin-based nanoparticles could provide sustained release of VEGF and may serve as a new way for angiogenesis.
© 2012 Blackwell Publishing Ltd.