Background & aims: Mutations in components of the Wnt signaling pathway, including β-catenin and AXIN1, are found in more than 50% of human hepatocellular carcinomas (HCCs). Disruption of Axin1 causes embryonic lethality in mice. We generated mice with conditional disruption of Axin1 to study its function specifically in adult liver.
Methods: Mice with a LoxP-flanked allele of Axin1 were generated by homologous recombination. Mice homozygous for the Axin1fl/fl allele were crossed with AhCre mice; in offspring, Axin1 was disrupted in liver following injection of β-naphthoflavone (Axin1fl/fl/Cre mice). Liver tissues were collected and analyzed by quantitative real-time polymerase chain reaction and immunoprecipitation, histology, and immunoblot assays.
Results: Deletion of Axin1 from livers of adult mice resulted in an acute and persistent increase in hepatocyte cell volume, proliferation, and transcription of genes that induce the G(2)/M transition in the cell cycle and cytokinesis. A subset of Wnt target genes was activated, including Axin2, c-Myc, and cyclin D1. However, loss of Axin1 did not increase nuclear levels of β-catenin or cause changes in liver zonation that have been associated with loss of the adenomatous polyposis coli (APC) or constitutive activation of β-catenin. After 1 year, 5 of 9 Axin1fl/fl/Cre mice developed liver tumors with histologic features of HCC.
Conclusions: Hepatocytes from adult mice with conditional disruption of Axin1 in liver have a transcriptional profile that differs from that associated with loss of APC or constitutive activation of β-catenin. It might be similar to a proliferation profile observed in a subset of human HCCs with mutations in AXIN1. Axin1fl/fl mice could be a useful model of AXIN1-associated tumorigenesis and HCC.
Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.