By examining the involvement of transient receptor potential vanilloid type 1 (TRPV1) in the stress modulation of learning and memory processes in mice, we evaluated the effects of endovanilloid N-oleoyldopamine (OLDA) on the long-term potentiation (LTP) of the lateral nucleus of the amygdala (LA). After high-frequency stimulation of external capsule fibers we found that LA-LTP is reduced in OLDA-treated slices derived from adult C57BL/6 control mice. The specificity of the TRPV1 receptor activation by OLDA was confirmed by blocking the OLDA-induced inhibitory effect on LA-LTP with the specific TRPV1 receptor antagonist AMG 9810. The specificity of OLDA was further supported by using TRPV1 deficient mice, where the effect of OLDA on LA-LTP was missing. Following exposure to a forced swim test (FST) OLDA enhanced LA-LTP in control but not TRPV1-deficient mice. The results also show that a short period of acute stress significantly impairs LA-LTP. Since we have recently shown the involvement of cannabinoid CB1 receptors in the mediation of capsaicin-induced inhibitory effects on LA-LTP ([23] Zschenderlein et al., 2011), it is reasonable to assume that the OLDA-induced enhancement of LA-LTP after the forced swim test can be attributed to the up-regulation of TRPV1 and the action of ligands such as anandamide on TRPV1. As a result, stimulation of TRPV1 receptors rescues LTP in slices derived from swim-stressed mice.
Copyright © 2012 Elsevier B.V. All rights reserved.