Conventional photodynamic therapy (PDT) is limited by the penetration depth of visible light needed for its activation. Here we used mesoporous-silica-coated upconversion fluorescent nanoparticles (UCNs) as a nanotransducer to convert deeply penetrating near-infrared light to visible wavelengths and a carrier of photosensitizers. We also used the multicolor-emission capability of the UCNs at a single excitation wavelength for simultaneous activation of two photosensitizers for enhanced PDT. We showed a greater PDT efficacy with the dual-photosensitizer approach compared to approaches using a single photosensitizer, as determined by enhanced generation of singlet oxygen and reduced cell viability. In vivo studies also showed tumor growth inhibition in PDT-treated mice by direct injection of UCNs into melanoma tumors or intravenous injection of UCNs conjugated with a tumor-targeting agent into tumor-bearing mice. As the first demonstration, to the best of our knowledge, of the photosensitizer-loaded UCN as an in vivo-targeted PDT agent, this finding may serve as a platform for future noninvasive deep-cancer therapy.