Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage display

J Mol Biol. 2012 Nov 23;424(1-2):88-103. doi: 10.1016/j.jmb.2012.09.006. Epub 2012 Sep 15.

Abstract

While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13 the N-terminal Forkhead-associated (FHA1) domain of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be nonfunctional due to misfolding in the bacterial periplasm. To overcome this limitation, we constructed a library of FHA1 variants by mutagenic PCR and isolated functional variants after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1 strand was discovered to be essential for phage display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermally stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20-25mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage display.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteriophages / genetics*
  • Directed Molecular Evolution*
  • Enzyme-Linked Immunosorbent Assay
  • Forkhead Transcription Factors / chemistry
  • Forkhead Transcription Factors / genetics*
  • Indicators and Reagents*
  • Models, Molecular
  • Mutagenesis, Site-Directed

Substances

  • Forkhead Transcription Factors
  • Indicators and Reagents