The quality of starch digestion, related to the rate and extent of release of dietary glucose, is associated with glycemia-related problems such as diabetes and other metabolic syndrome conditions. Here, we found that the rate of glucose generation from starch is unexpectedly associated with mucosal α-glucosidases and not just α-amylase. This understanding could lead to a new approach to regulate the glycemic response and glucose-related physiologic responses in the human body. There are six digestive enzymes for starch: salivary and pancreatic α-amylases and four mucosal α-glucosidases, including N- and C-terminal subunits of both maltase-glucoamylase and sucrase-isomaltase. Only the mucosal α-glucosidases provide the final hydrolytic activities to produce substantial free glucose. We report here the unique and shared roles of the individual α-glucosidases for α-glucans persisting after starch is extensively hydrolyzed by α-amylase (to produce α-limit dextrins (α-LDx)). All four α-glucosidases share digestion of linear regions of α-LDx, and three can hydrolyze branched fractions. The α-LDx, which were derived from different maize cultivars, were not all equally digested, revealing that the starch source influences glucose generation at the mucosal α-glucosidase level. We further discovered a fraction of α-LDx that was resistant to the extensive digestion by the mucosal α-glucosidases. Our study further challenges the conventional view that α-amylase is the only rate-determining enzyme involved in starch digestion and better defines the roles of individual and collective mucosal α-glucosidases. Strategies to control the rate of glucogenesis at the mucosal level could lead to regulation of the glycemic response and improved glucose management in the human body.