Properties and plasticity of inhibitory synapses on fast-spiking (FS) GABAergic (FS-GABA) interneurons in layer II/III of the mouse visual cortex were examined in cortical slices by whole-cell recordings of IPSCs or IPSPs evoked by activation of presynaptic FS or non-FS GABAergic interneurons. Unitary IPSCs (uIPSCs) evoked by action potentials of FS-GABA neurons have shorter onset latency, faster rising slope, higher peak amplitude, and faster decay time than those evoked by action potentials of non-FS-GABA neurons. Tetanic activation of presynaptic FS-GABA neurons induced long-term potentiation (LTP) of uIPSCs, whereas that of presynaptic non-FS-GABA neurons did not induce LTP, indicating that long-term plasticity of inhibitory synapses on FS-GABA neurons is pathway specific. For further analysis of inhibitory synaptic plasticity, IPSPs evoked by electrical stimulation of an adjacent site in the cortex were recorded from FS-GABA neurons. Theta burst stimulation induced LTP of IPSPs in 12 of 14 FS-GABA neurons. The paired-pulse stimulation protocol and coefficient of variation analysis indicated that this form of LTP may be presynaptic in origin. Filling postsynaptic cells with a Ca(2+) chelator did not block the induction of LTP, suggesting no involvement of postsynaptic Ca(2+) rise. Also, this form of LTP was dependent neither on metabotropic glutamate receptors nor voltage-gated Ca(2+) channels of the L and T types. Further pharmacological analysis indicated that voltage-gated Ca(2+) channels other than the P/Q type, such as N and R types, were not involved in LTP, suggesting that P/Q-type channels are a candidate for factors inducing LTP of inhibitory synapses between FS-GABA neurons.