Is the mitochondrial outermembrane protein VDAC1 therapeutic target for Alzheimer's disease?

Biochim Biophys Acta. 2013 Jan;1832(1):67-75. doi: 10.1016/j.bbadis.2012.09.003. Epub 2012 Sep 17.

Abstract

Mitochondrial dysfunction and synaptic damage have been described as early events in Alzheimer's disease (AD) pathogenesis. Recent research using AD postmortem brains, and AD mouse and cell models revealed that amyloid beta (Aβ) and tau hyperphosphorylation are involved in mitochondrial dysfunction and synaptic damage in AD. Further, recent research also revealed that the protein levels of mitochondrial outer membrane protein, voltage-dependent anion channel 1 (VDAC1), are elevated in the affected regions of AD postmortem brains and cortical tissues from APP transgenic mice. In addition, emerging research using AD postmortem brains and AD mouse models revealed that VDAC1 is linked to Aβ and phosphorylated tau, blocks the mitochondrial permeability transition (MPT) pores, disrupts the transport of mitochondrial proteins and metabolites, impairs gating of VDAC, and causes defects in oxidative phosphorylation, leading to mitochondrial dysfunction in AD neurons. The purpose of this article is to review research that has investigated the relationship between VDAC1 and the regulation of MPT pores in AD progression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / drug therapy
  • Alzheimer Disease / genetics
  • Alzheimer Disease / metabolism*
  • Amyloid beta-Peptides / genetics
  • Amyloid beta-Peptides / metabolism
  • Animals
  • Humans
  • Mice
  • Mitochondria / genetics
  • Mitochondria / metabolism*
  • Voltage-Dependent Anion Channel 1 / antagonists & inhibitors
  • Voltage-Dependent Anion Channel 1 / genetics
  • Voltage-Dependent Anion Channel 1 / metabolism*

Substances

  • Amyloid beta-Peptides
  • Voltage-Dependent Anion Channel 1