T-cell activation in lymph nodes relies on encounters with antigen (Ag)-bearing dendritic cells (DCs) but the number of DCs required to initiate an immune response is unknown. Here we have used a combination of flow cytometry, 2-photon imaging, and computational modeling to quantify the probability of T cell-DC encounters. We calculated that the chance for a T cell residing 24 hours in a murine popliteal lymph nodes to interact with a DC was 8%, 58%, and 99% in the presence of 10, 100, and 1000 Ag-bearing DCs, respectively. Our results reveal the existence of a threshold in DC numbers below which T-cell responses fail to be elicited for probabilistic reasons. In mice and probably humans, we estimate that a minimum of 85 DCs are required to initiate a T-cell response when starting from precursor frequency of 10(-6). Our results have implications for the rational design of DC-based vaccines.