We measure a large valley-orbit splitting for shallow isolated phosphorus donors in a silicon gated nanowire. This splitting is close to the bulk value and well above previous reports in silicon nanostructures. It was determined using a double dopant transport spectroscopy which eliminates artifacts induced by the environment. Quantitative simulations taking into account the position of the donors with respect to the Si/SiO2 interface and electric field in the wire show that the values found are consistent with the device geometry.