Role of interchain coupling in the metallic state of conducting polymers

Phys Rev Lett. 2012 Sep 7;109(10):106405. doi: 10.1103/PhysRevLett.109.106405. Epub 2012 Sep 7.

Abstract

We investigated the charge dynamics of the conductivity enhancement from 2 to 1000 S/cm in poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) as induced by structural changes through the addition of a polar solvent and the following solvent bath treatment. Our results indicate that the addition of a polar solvent selectively enhanced the π-π coupling of the polymer chains, resulting in the reduction of disorder and tremendously increasing the charge carrier mobility, which yielded an insulator-to-metal transition. In contrast, the following solvent bath treatment selectively enhanced the intergrain coupling, which did not affect the disorder or the mobility but increased the charge carrier density. Therefore, we demonstrate that the conduction-character defining disorder in this conducting polymer system is determined by the extent of interchain coupling.