We report a bound state of the one-dimensional two-particle (bosonic or fermionic) Hubbard model with an impurity potential. This state has the Bethe-ansatz form, although the model is nonintegrable. Moreover, for a wide region in parameter space, its energy is located in the continuum band. A remarkable advantage of this state with respect to similar states in other systems is the simple analytical form of the wave function and eigenvalue. This state can be tuned in and out of the continuum continuously.