Several species of scorpions are known to cause accidents which can lead to death, most of them belonging to the genus Tityus. Tityus serrulatus is considered the most dangerous scorpion in South America. In Brazil, T. serrulatus is responsible for serious accidents, including deaths, which occur mainly with children and elderly people. Anti-scorpion sera are routinely produced by various institutions, and suitable technologies have been investigated for encapsulation and release recombinant or native proteins capable of inducing antibody production. In this context, biocompatible and biodegradable polymers, such as chitosan, have been employed for this purpose. This study aimed to obtain a protein release system for the peptides or proteins from T. serrulatus, based on cross-linked chitosan nanoparticles (CN) in order to generate a new model of immunization in animals, and consequently a potentially novel polyclonal serum, namely an anti-T. serrulatus venom. CN were successfully obtained by ionic gelation using the polyanion tripolyphosphate (TPP), which demonstrated a suitable particle size of about 200 nm, with maximum encapsulation efficiency (100%) and enhanced antigen-specific antibody titers of 72%. The serum production data revealed that CN were equipotent to aluminum hydroxide, the traditional adjuvant for immunization. This study demonstrates that chitosan nanoparticles are a promising and safe system for peptide/protein delivery for T. serrulatus scorpion.
Copyright © 2012 Elsevier Ltd. All rights reserved.