Objective: To investigate the inhibitory effects and the regulatory mechanisms of histone deacetylase (HDAC) inhibitors on mechanical stress-induced gene expression of runt-related transcription factor (RUNX)-2 and adisintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5 in human chondrocytes.
Methods: Human chondrocytes were seeded in stretch chambers at a concentration of 5 × 10(4)cells/chamber. Cells were pre-incubated with or without HDAC inhibitors (MS-275 or trichostatin A; TSA) for 12h, followed by uniaxial cyclic tensile strain (CTS) (0.5Hz, 10% elongation), which was applied for 30 min using the ST-140-10 system (STREX, Osaka, Japan). Total RNA was extracted and the expression of RUNX-2, ADAMTS-5, matrix metalloproteinase (MMP)-3, and MMP-13 at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The activation of diverse mitogen-activated protein kinase (MAPK) pathways with or without HDAC inhibitors during CTS was examined by western blotting.
Results: HDAC inhibitors (TSA: 10 nM, MS-275: 100 nM) suppressed CTS-induced expression of RUNX-2, ADAMTS-5, and MMP-3 at both the mRNA and protein levels within 1h. CTS-induced activation of p38 MAPK (p38), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) MAPKs was downregulated by both HDAC inhibitors.
Conclusion: The CTS-induced expression of RUNX-2 and ADAMTS-5 was suppressed by HDAC inhibitors via the inhibition of the MAPK pathway activation in human chondrocytes. The results of the current study suggested a novel therapeutic role for HDAC inhibitors against degenerative joint disease such as osteoarthritis.
Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.