This work has been focused on the development of novel optical (Surface Plasmon Resonance) and electrochemical based biosensors for the determination of 25-OH vitamin D (25OHD) which is an important factor involved in avoiding both skeletal damage and a variety of pathological conditions, and to evaluate their potential use in clinical practice. Different approaches to the determination of vitamin D using affinity based biosensors, are described herein; firstly, an immunosensor based on SPR transduction was realized for direct determination of vitamin D, obtaining a LOD of 2 μg/ml which unfortunately is too far from the needs in clinical analysis. In order to enhance the sensitivity, the vitamin D was modified with gold nanoparticles (AuNPs): the binding of 25OHD with AuNPs determines the amplification of SPR signal, allowing to lower the LOD down to 1 μg/ml, doubling the sensitivity. An alternative SPR method, based on the indirect determination of vitamin D by means of Vitamin D Binding Protein (VDBP), led to a further sensitivity increase reaching a LOD of 45 ng/ml which is really close to the fixed accomplishment. Finally, an electrochemical transduced biosensor has been realized, based on the reaction of vitamin D with 4-ferrocenylmethyl-1,2,4-triazoline-3,5-dione (FMTAD): once derivatized, the determination of 25OHD was possible in the range 20-200 ng/ml with a LOD of 10 ng/ml. The latter proposed system fits the requirement of determining vitamin D in a concentration range which is of significance for clinical applications; moreover, since a screen printed electrode has been used, this opens the possibility to miniaturize the sensor and developing a portable and easy-to-automate point-of-care testing device. The proposed devices provide an improvement with respect to traditional methods that are time and reagents consuming and require radioactive compounds, pretreatment procedures and expensive instrumentation.
Copyright © 2012 Elsevier B.V. All rights reserved.