Glioblastoma (GBM) is the most common malignant primary brain tumors in adults and exhibit striking aggressiveness. Although GBM constitute a single histological entity, they exhibit considerable variability in biological behavior, resulting in significant differences in terms of prognosis and response to treatment. In an attempt to better understand the biology of GBM, many groups have performed high-scale profiling studies based on gene or protein expression. These studies have revealed the existence of several GBM subtypes. Although there remains to be a clear consensus, two to four major subtypes have been identified. Interestingly, these different subtypes are associated with both differential prognoses and responses to therapy. In the present study, we investigated an alternative immunohistochemistry (IHC)-based approach to achieve a molecular classification for GBM. For this purpose, a cohort of 100 surgical GBM samples was retrospectively evaluated by immunohistochemical analysis of EGFR, PDGFRA and p53. The quantitative analysis of these immunostainings allowed us to identify the following two GBM subtypes: the "Classical-like" (CL) subtype, characterized by EGFR-positive and p53- and PDGFRA-negative staining and the "Proneural-like" (PNL) subtype, characterized by p53- and/or PDGFRA-positive staining. This classification represents an independent prognostic factor in terms of overall survival compared to age, extent of resection and adjuvant treatment, with a significantly longer survival associated with the PNL subtype. Moreover, these two GBM subtypes exhibited different responses to chemotherapy. The addition of temozolomide to conventional radiotherapy significantly improved the survival of patients belonging to the CL subtype, but it did not affect the survival of patients belonging to the PNL subtype. We have thus shown that it is possible to differentiate between different clinically relevant subtypes of GBM by using IHC-based profiling, a method that is advantageous in its ease of daily implementation and in large-scale clinical application.