Acrolein (Acr), an α,β-unsaturated aldehyde, is abundant in tobacco smoke and cooking and exhaust fumes. Acr induces mutagenic α- and γ- hydroxy-1,N(2)-cyclic propano-deoxyguanosine adducts in normal human bronchial epithelial cells. Our earlier work has found that Acr-induced DNA damage preferentially occurs at lung cancer p53 mutational hotspots that contain CpG sites and that methylation at CpG sites enhances Acr-DNA binding at these sites. Based on these results, we hypothesized that this enhancement of Acr-DNA binding leads to p53 mutational hotspots in lung cancer. In this study, using a shuttle vector supF system, we tested this hypothesis by determining the effect of CpG methylation on Acr-DNA binding and the mutations in human lung fibroblasts. We found that CpG methylation enhances Acr-induced mutations significantly. Although CpG methylation enhances Acr-DNA binging at all CpG sites, it enhances mutations at selective--TCGA--sites. Similarly, we found that CpG methylation enhances benzo(a)pyrene diol epoxide binding at all -CpG- sites. However, the methylated CpG sequences in which benzo(a)pyrene diol epoxide-induced mutations are enhanced are different from the CpG sequences in which Acr-induced mutations are enhanced. CpG methylation greatly increases Acr-induced G to T and G to A mutation frequency to levels similar to these types of mutations found in the CpG sites in the p53 gene in tobacco smoke-related lung cancer. These results indicate that both CpG sequence context and the chemical nature of the carcinogens are crucial factors for determining the effect of CpG methylation on mutagenesis.