An additional class of endogenous lipid amides, N-arachidonoyl amino acids (Ara-AAs), is growing in significance in the field of endocannabinoids. The development, validation, and application of a sensitive and selective method to simultaneously monitor and quantify the level of Ara-AAs along with anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in mouse brain has been established. The linearity of the method over the concentration ranges of 0.2-120 pg/μl for the standards of N-arachidonoyl amino acids, N-arachidonoyl alanine (NAAla), serine (NASer), γ-aminobutyric acid (NAGABA), and glycine (NAGly); 0.7-90 pg/μl for AEA-d(0)/d(8); and 7.5-950 pg/μl for 2-AG was determined with R(2) values of 0.99. Also the effects of the FAAH inhibitor URB 597 on the endogenous levels of these analytes were investigated. AEA and NASer brain levels exhibit a dose-dependent increase after systemic administration of URB 597, whereas NAGly and NAGABA were significantly decreased after treatment. NAAla and 2-AG were not altered after URB 597 treatment. The potential benefit of establishing this assay extends beyond the quantification of the Ara-AAs along with AEA and 2-AG in mouse brain, to reveal a variety of pharmacological effects and physiological roles of these analytes.
Copyright © 2012 Elsevier Inc. All rights reserved.