Whereas the beneficial effects of intermittent treatment with parathyroid hormone (PTH) (intact PTH 1-84 or fragment PTH 1-34, teriparatide) on vertebral strength is well documented, treatment may not be equally effective in the peripheral skeleton. We used high-resolution peripheral quantitative computed tomography (HR-pQCT) to detail effects on compartmental geometry, density, and microarchitecture as well as finite element (FE) estimated integral strength at the distal radius and tibia in postmenopausal osteoporotic women treated with PTH 1-34 (20 µg sc daily, n = 18) or PTH 1-84 (100 µg sc daily, n = 20) for 18 months in an open-label, nonrandomized study. A group of postmenopausal osteoporotic women receiving zoledronic acid (5 mg infusion once yearly, n = 33) was also included. Anabolic therapy increased cortical porosity in radius (PTH 1-34 32 ± 37%, PTH 1-84 39 ± 32%, both p < 0.001) and tibia (PTH 1-34 13 ± 27%, PTH 1-84 15 ± 22%, both p < 0.001) with corresponding declines in cortical density. With PTH 1-34, increases in cortical thickness in radius (2.0 ± 3.8%, p < 0.05) and tibia (3.8 ± 10.4%, p < 0.01) were found. Trabecular number increased in tibia with both PTH 1-34 (4.2 ± 7.1%, p < 0.05) and PTH 1-84 (5.3 ± 8.3%, p < 0.01). Zoledronic acid did not impact cortical porosity at either site but increased cortical thickness (3.0 ± 3.5%, p < 0.01), total (2.7 ± 2.5%, p < 0.001) and cortical density (1.5 ± 2.0%, p < 0.01) in tibia as well as trabecular volume fraction in radius (2.5 ± 5.1%, p < 0.05) and tibia (2.2 ± 2.2%, p < 0.01). FE estimated bone strength was preserved, but not increased, with PTH 1-34 and zoledronic acid at both sites, whereas it decreased with PTH 1-84 in radius (-2.8 ± 5.8%, p < 0.05) and tibia (-3.9 ± 4.8%, p < 0.001). Conclusively, divergent treatment-specific effects in cortical and trabecular bone were observed with anabolic and zoledronic acid therapy. The finding of decreased estimated strength with PTH 1-84 treatment was surprising and warrants confirmation.
Copyright © 2013 American Society for Bone and Mineral Research.