Recent advances in high-throughput genotyping have motivated genomic selection using high-density markers. However, an increasingly large number of markers brings up both statistical and computational issues and makes it difficult to estimate the breeding values. We propose to apply the penalized orthogonal-components regression (POCRE) method to estimate breeding values. As a supervised dimension reduction method, POCRE sequentially constructs linear combinations of markers, i.e. orthogonal components, such that these components are most closely correlated to the phenotype. Such a dimension reduction is able to group highly correlated predictors and allows for collinear or nearly collinear markers. Different from BayesB, which predetermines hyperparameters, POCRE uses an empirical Bayes thresholding method to obtain data-driven optimal hyperparameters and effectively select important markers when constructing each component. Demonstrated through simulation studies, POCRE greatly reduces the computing time compared with BayesB. On the other hand, unlike fBayesB which slightly sacrifices prediction accuracy for fast computation, POCRE provides similar or even better accuracy of predicting breeding values than BayesB in both simulation studies and real data analyses.
Keywords: GenPred; Shared data resources; genomic selection; genotypic estimate of breeding values (GEBV); penalized orthogonal-components regression (POCRE); phenotypic estimate of breeding values (PEBV).