Aims/hypothesis: IL-12 is an important cytokine in early inflammatory responses and is implicated in the immune-mediated pathogenesis of pancreatic islets in diabetes. However, little is known about the direct effects of IL-12 on islets and beta cells.
Methods: In this study, beta cell function, gene expression and protein production were assessed in primary human donor islets and murine beta cell lines in response to stimulation with IL-12 or a pro-inflammatory cytokine cocktail (TNF-α, IL-1β and IFN-γ).
Results: The pro-inflammatory cytokine cocktail induced islet dysfunction and potently increased the expression and production of IL-12 ligand and IL-12 receptor in human islets. In human islets, the receptor for IL-12 co-localised to the cell surface of insulin-producing cells. Both IL-12 ligand and IL-12 receptor are expressed in the homogeneous beta cell line INS-1. IL-12 induced changes in gene expression, including a dose-dependent upregulation of IFNγ (also known as IFNG), in INS-1 cells. A neutralising antibody to IL-12 directly inhibited IFNγ gene expression in human donor islets induced by either IL-12 or pro-inflammatory cytokine stimulation. Functionally, IL-12 impaired glucose-stimulated insulin secretion (GSIS) in INS-1 cells and human donor islets. A neutralising antibody to IL-12 reversed the beta cell dysfunction (uncoupling of GSIS or induction of caspase-3 activity) induced by pro-inflammatory cytokines.
Conclusions/interpretation: These data identify beta cells as a local source of IL-12 ligand and suggest a direct role of IL-12 in mediating beta cell pathology.