Deep sequencing of Myxilla (Ectyomyxilla) methanophila, an epibiotic sponge on cold-seep tubeworms, reveals methylotrophic, thiotrophic, and putative hydrocarbon-degrading microbial associations

Microb Ecol. 2013 Feb;65(2):450-61. doi: 10.1007/s00248-012-0130-y. Epub 2012 Oct 11.

Abstract

The encrusting sponge Myxilla (Ectyomyxilla) methanophila (Poecilosclerida: Myxillidae) is an epibiont on vestimentiferan tubeworms at hydrocarbon seeps on the upper Louisiana slope of the Gulf of Mexico. It has long been suggested that this sponge harbors methylotrophic bacteria due to its low δ(13)C value and high methanol dehydrogenase activity, yet the full community of microbial associations in M. methanophila remained uncharacterized. In this study, we sequenced 16S rRNA genes representing the microbial community in M. methanophila collected from two hydrocarbon-seep sites (GC234 and Bush Hill) using both Sanger sequencing and next-generation 454 pyrosequencing technologies. Additionally, we compared the microbial community in M. methanophila to that of the biofilm collected from the associated tubeworm. Our results revealed that the microbial diversity in the sponges from both sites was low but the community structure was largely similar, showing a high proportion of methylotrophic bacteria of the genus Methylohalomonas and polycyclic aromatic hydrocarbon (PAH)-degrading bacteria of the genera Cycloclasticus and Neptunomonas. Furthermore, the sponge microbial clone library revealed the dominance of thioautotrophic gammaproteobacterial symbionts in M. methanophila. In contrast, the biofilm communities on the tubeworms were more diverse and dominated by the chemoorganotrophic Moritella at GC234 and methylotrophic Methylomonas and Methylohalomonas at Bush Hill. Overall, our study provides evidence to support previous suggestion that M. methanophila harbors methylotrophic symbionts and also reveals the association of PAH-degrading and thioautotrophic microbes in the sponge.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacteria / classification*
  • Bacteria / genetics
  • Biofilms
  • DNA, Bacterial / genetics
  • Gene Library
  • Gulf of Mexico
  • High-Throughput Nucleotide Sequencing
  • Polycyclic Aromatic Hydrocarbons / metabolism
  • Porifera / microbiology*
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Symbiosis
  • Water Microbiology

Substances

  • DNA, Bacterial
  • Polycyclic Aromatic Hydrocarbons
  • RNA, Ribosomal, 16S