Persistent impairments in the regulation of intestinal iron absorption result in iron deficiency or iron accumulation in the long term. Diagnosis remains difficult unless pathological symptoms develop as iron absorption varies strongly between meals and days. Variations in the natural iron isotopic composition of whole blood have recently been suggested as a novel parameter to assess long-term differences in intestinal absorption efficiency between individuals. In this study, baseline blood samples collected in two previous conventional iron absorption studies in Swiss and Thai women using stable isotope tracers were reanalyzed by multicollector inductively coupled plasma mass spectrometry. The natural iron isotopic compositions obtained were compared with fractional absorption from the test meals observed in these earlier trials. Correlations of natural blood iron isotopic composition and fractional absorption from the test meals were found to be highly significant in both cohorts (for Swiss women, r = 0.40, P = 0.01, n = 38; for Thai women, r = 0.57, P < 0.01, n = 24), with the blood of both ethnicities clearly differing in iron isotopic composition (P < 0.001). Combining the findings of this study and those of recent animal and human studies confirms that blood iron isotopic patterns may serve as a novel compound biomarker of iron metabolism to assess impairments in regulation of intestinal iron absorption in individuals or population groups.