Dendritic cells (DC) are a heterogeneous population of leucocytes which play a key role in initiating and modulating immune responses. The human CD300 family consists of six immunoregulatory leucocyte membrane molecules that regulate cellular activity including differentiation, viability, cytokine and chemokine secretion, phagocytosis and chemotaxis. Recent work has identified polar lipids as probable ligands for these molecules in keeping with the known evolutionary conservation of this family. CD300 molecules are all expressed by DC; CD300b, d, e and f are restricted to different subpopulations of the myeloid DC lineage. They have been shown to regulate DC function both in vitro and in vivo. In addition DC are able to regulate their CD300 expression in an autocrine manner. The potential to form different CD300 heterodimers adds further complexity to their role in fine tuning DC function. Expression of CD300 molecules is altered in a number of diseases including many where DC are implicated in the pathogenesis. CD300 antibodies have been demonstrated to have significant therapeutic effect in animal models. The mechanisms underlying the immunoregulatory effects of the CD300 family are complex. Deciphering their physiology will allow effective targeting of these molecules as novel therapies in a wide variety of inflammatory diseases.
Copyright © 2013 Elsevier B.V. All rights reserved.