Metabolite-responsive hydrogels that detect pathological metabolite concentrations and react by releasing a therapeutic stimulus hold high promises in treating metabolic diseases. In this study, a hydrogel is described that discriminates between physiological and pathological concentrations of urate, the causative agent of gouty arthritis. The hydrogel is synthesized by coupling a dimeric variant of the Deinococcus radiodurans-derived urate repressor HucR to linear polyacrylamide. The protein-grafted polymer is crosslinked to form a hydrogel by a multimeric hucO DNA sequence [hucO]n specifically binding HucR. At elevated urate concentrations, HucR dissociates from [hucO]n thereby weakening the hydrogel structure and resulting in its dissolution.
Keywords: DNA-protein interaction; biomaterial; gout; repressor protein; stimuli-sensitive polymers.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.