The methods for detecting and measuring autoantibodies have evolved markedly in recent years, encompassing three generations of analytical technologies. Many different immunoassay methods have been developed and used for research and laboratory practice purposes, from the early conventional (or monoplex) analytical methods able to detect single autoantibodies to the more recent multiplex platforms that can quantify tens of molecules. Although it has been in use for over 50 years, indirect immunofluorescence remains the standard method for research on many types of autoantibodies, due to its characteristics of diagnostic sensitivity and also to recent technological innovations which permit it a greater level of automation and standardization. The recent multiplex immunometric methods, with varying levels of automation, present characteristics of higher diagnostic accuracy, but are not yet widely diffused in autoimmunology laboratories due to the limited number of autoantibodies that are detectable, and due to the high cost of reagents and systems. Technological advancement in autoimmunology continues to evolve rapidly, and in the coming years new proteomic techniques will be able to radically change the approach to diagnostics and possibly also clinical treatment of autoimmune diseases. The scope of this review is to update the state of the art of technologies and methods for the measurement of autoantibodies, with special reference to innovations in indirect immunofluorescence and in multiple proteomic methods.