Coexistence in tropical forests through asynchronous variation in annual seed production

Ecology. 2012 Sep;93(9):2073-84. doi: 10.1890/11-1935.1.

Abstract

The storage effect is a mechanism that can facilitate the coexistence of competing species through temporal fluctuations in reproductive output. Numerous natural systems have the prerequisites for the storage effect, yet it has rarely been quantitatively assessed. Here, we investigate the possible importance of the storage effect in explaining the coexistence of tree species in the diverse tropical forest on Barro Colorado Island, Panama. This tropical forest has been monitored for more than 20 years, and annual seed production is asynchronous among species, a primary requirement for the storage effect. We constructed a model of forest regeneration that includes species-specific recruitment through seed, sapling, and adult stages, and we parameterized the model using data for 28 species for which information is known about seedling germination and survival. Simulations of the model demonstrated that the storage effect alone can be a strong mechanism allowing long-term persistence of species. We also developed a metric to quantify the strength of the storage effect in a way comparable to classical resource partitioning. Applying this metric to seed production data from 108 species, the storage effect reduces the strength of pairwise interspecific competition to 11-43% of the strength of intraspecific competition, thereby demonstrating strong potential to facilitate coexistence. Finally, for a subset of 51 species whose phylogenetic relationships are known, we compared the strength of the storage effect between pairs of species to their phylogenetic similarity. The strength of the storage effect between closely related species was on average no different from distantly related species, implying that the storage effect can be important in promoting the coexistence of even closely related species.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation
  • Ecosystem*
  • Models, Biological
  • Panama
  • Population Dynamics
  • Seasons*
  • Seeds / physiology*
  • Time Factors
  • Trees / physiology*
  • Tropical Climate*