Glycogen synthase kinase-3β(GSK-3β), which is a member of the serine/threonine kinase family, has been shown to be crucial for cellular survival, differentiation, and metabolism. Here, we present evidence that GSK-3β is associated with the karyopherin β2 (Kap β2) (102-kDa), which functions as a substrate for transportation into the nucleus. A potential PY-NLS motif ((109)IVRLRYFFY(117)) was observed, which is similar with the consensus PY NLS motif (R/K/H)X(2-5)PY in the GSK-3β catalytic domain. Using a pull down approach, we observed that GSK-3β physically interacts with Kap β2 both in vivo and in vitro. Secondly, GSK-3β and Kap β2 were shown to be co-localized by confocal microscopy. The localization of GSK-3β to the nuclear region was disrupted by putative Kap β2 binding site mutation. Furthermore, in transient transfection assays, the Kap β2 binding site mutant induced a substantial reduction in the in vivo serine/threonine phosphorylation of GSK-3β, where- as the GSK-3β wild type did not. Thus, our observations indicated that Kap β2 imports GSK-3β through its putative PY NLS motif from the cytoplasm to the nucleus and increases its kinase activity.