According to the bridged annulene model, macrocyclic aromaticity of a porphyrinoid species can be attributed to the annulene-like main macrocyclic conjugation pathway (MMCP). Macrocyclic aromaticity, however, is given theoretically as a sum of contributions from all macrocyclic circuits. We found that the aromaticity due to each macrocyclic circuit is determined formally but broadly by Hückel's [4n + 2] rule of aromaticity. Nitrogen atoms in the pyrrolic rings effectively suppress the variation in the number of π electrons staying along each macrocyclic circuit. As a result, all or most macrocyclic circuits in oligopyrrolic macrocycles are made aromatic (or antiaromaitc) in phase with the MMCP. Thus, the MMCP is not a determinant of macrocyclic aromaticity but can be regarded as a good indicator of this quantity. This is why the bridged annulene model appears to hold for many porphyrins.