Purpose: Protein kinase D (PKD) mediates diverse biological responses including cell growth and survival. Therefore, PKD inhibitors may have therapeutic potential. We evaluated the in vitro cytotoxicity of two PKD inhibitors, kb-NB142-70 and its methoxy analogue, kb-NB165-09, and examined their in vivo efficacy and pharmacokinetics.
Methods: The in vitro cytotoxicities of kb-NB142-70 and kb-NB165-09 were evaluated by MTT assay against PC-3, androgen-independent prostate cancer cells, and CFPAC-1 and PANC-1, pancreatic cancer cells. Efficacy studies were conducted in mice bearing either PC-3 or CPFAC-1 xenografts. Tumor-bearing mice were euthanized between 5 and 1,440 min after iv dosing, and plasma and tissue concentrations were measured by HPLC-UV. Metabolites were characterized by LC-MS/MS.
Results: kb-NB142-70 and kb-NB165-09 inhibited cellular growth in the low-mid μM range. The compounds were inactive when administered to tumor-bearing mice. In mice treated with kb-NB142-70, the plasma C (max) was 36.9 nmol/mL, and the PC-3 tumor C (max) was 11.8 nmol/g. In mice dosed with kb-NB165-09, the plasma C (max) was 61.9 nmol/mL, while the PANC-1 tumor C (max) was 8.0 nmol/g. The plasma half-lives of kb-NB142-70 and kb-NB165-09 were 6 and 14 min, respectively. Both compounds underwent oxidation and glucuronidation.
Conclusions: kb-NB142-70 and kb-NB165-09 were rapidly metabolized, and concentrations in tumor were lower than those required for in vitro cytotoxicity. Replacement of the phenolic hydroxyl group with a methoxy group increased the plasma half-life of kb-NB165-09 2.3-fold over that of kb-NB142-70. Rapid metabolism in mice suggests that next-generation compounds will require further structural modifications to increase potency and/or metabolic stability.