We examine the nucleation kinetics of Au clusters on graphene and explore the relationship with layer number and underlying supporting substrate of graphene. Using the mean field theory of diffusion-limited aggregation, morphology patterns are semiquantitatively analyzed to obtain Au adatom effective diffusion constants and activation energies. Under specified assumptions, the Au adatom diffusion constant for single-layer graphene supported on SiO2 is ∼50 times smaller than that for hexagonal boron nitride (h-BN)-supported graphene and on the order of 800 times smaller than that for multilayer graphite. Bilayer graphene on SiO2 shows a Au adatom diffusion constant similar to single-layer graphene on h-BN. Scanning probe data show that single-layer graphene is far flatter on h-BN than on SiO2. Two factors are proposed as contributing to the observed lower diffusion constants on single-layer graphene: local surface roughness and homogeneous loss of dispersion/van der Waals electronic stability in multilayers. Graphene Raman spectroscopy shows little charge transfer between Au nanoparticles and graphene.