More than 50% of adults and ~20% of children with pre-B acute lymphoblastic leukemia (ALL) relapse following treatment. Dismal outcomes for patients with relapsed or refractory disease mandate novel approaches to therapy. We have previously shown that the combination of the mTOR inhibitor RAD001 (everolimus) and the chemotherapeutic agent vincristine increases the survival of non-obese diabetic/severe combined immuno-deficient (NOD/SCID) mice bearing human ALL xenografts. We have also shown that 16 μM RAD001 synergized with agents that cause DNA damage or microtubule disruption in pre-B ALL cells in vitro. Here, we demonstrate that RAD001 has dose-dependent effects on the cell cycle in ALL cells, with 1.5 μM RAD001 inhibiting pRb, Ki67 and PCNA expression and increasing G0/1 cell cycle arrest, whereas 16 μM RAD001 increases pRb, cyclin D1, Ki67 and PCNA, with no evidence of an accumulation of cells in G0/1. Transition from G2 into mitosis was promoted by 16 μM RAD001 with reduced phosphorylation of cdc2 in cells with 4 N DNA content. However, 16 μM RAD001 preferentially induced cell death in cells undergoing mitosis. When combined with vincristine, 16 μM RAD001 reduced the vincristine-induced accumulation of cells in mitosis, probably as a result of increased death in this population. Although 16 μM RAD001 weakly activated Chk1 and Chk2, it suppressed strong vincristine-induced activation of these cell cycle checkpoint regulators. We conclude that RAD001 enhances chemosensitivity at least in part through suppression of cell cycle checkpoint regulation in response to vincristine and increased progression from G2 into mitosis.