The structural phase stability of 1,1-diamino-2,2-dinitroethylene (FOX-7) has been studied up to 10 GPa through isothermal compression at 100 °C and 200 °C using synchrotron mid- and far-infrared spectroscopy. During isothermal compression at 100 °C changes are observed in vibrational spectra with increase in pressure that are indicative of significant distortion to monoclinic α phase or a possible structural transformation to a high pressure α(') phase at 2.2 GPa and α(") phase at 6.1 GPa. At 200 °C, for the far- and mid-IR regimes, the similar changes were observed at 2.1 (2.0) GPa and 5.3 (5.5) GPa, respectively. The observed change is nearly isobaric, consistent with previously reported high pressure and room temperature values, up to the highest temperature of 200 °C reached in our experiments. Over the total P-T range investigated, up to ∼10 GPa and 200 °C, we observed no evidence of sample decomposition. The observed changes are partially reversible with only slight evidence of the high pressure distortion remaining upon complete decompression. Additional isobaric heating at 1.07 GPa was performed in the mid-IR regime, which clearly revealed an onset of decomposition at 360 °C. Further x-ray or neutron diffraction, which are needed to fully resolve the cause of observed changes above 2 and 5 GPa, are ongoing.