Molecular characterization of chronic lymphocytic leukemia patients with a high number of losses in 13q14

PLoS One. 2012;7(11):e48485. doi: 10.1371/journal.pone.0048485. Epub 2012 Nov 13.

Abstract

Background: Patients with chronic lymphocytic leukemia and 13q deletion as their only FISH abnormality could have a different outcome depending on the number of cells displaying this aberration. Thus, cases with a high number of 13q- cells (13q-H) had both shorter overall survival and time to first therapy. The goal of the study was to analyze the genetic profile of 13q-H patients.

Design and methods: A total of 102 samples were studied, 32 of which served as a validation cohort and five were healthy donors.

Results: Chronic lymphocytic leukemia patients with higher percentages of 13q- cells (>80%) showed a different level of gene expression as compared to patients with lower percentages (<80%, 13q-L). This deregulation affected genes involved in apoptosis and proliferation (BCR and NFkB signaling), leading to increased proliferation and decreased apoptosis in 13q-H patients. Deregulation of several microRNAs, such as miR-15a, miR-155, miR-29a and miR-223, was also observed in these patients. In addition, our study also suggests that the gene expression pattern of 13q-H cases could be similar to the patients with 11q- or 17p-.

Conclusions: This study provides new evidence regarding the heterogeneity of 13q deletion in chronic lymphocytic leukemia patients, showing that apoptosis, proliferation as well as miRNA regulation are involved in cases with higher percentages of 13q- cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Alleles
  • Case-Control Studies
  • Chromosome Deletion*
  • Chromosomes, Human, Pair 11
  • Chromosomes, Human, Pair 13*
  • Chromosomes, Human, Pair 17
  • Cluster Analysis
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation, Leukemic
  • Humans
  • Immunoglobulin Heavy Chains / genetics
  • Immunoglobulin Variable Region / genetics
  • Leukemia, Lymphocytic, Chronic, B-Cell / genetics*
  • Leukemia, Lymphocytic, Chronic, B-Cell / metabolism
  • Male
  • MicroRNAs / genetics
  • MicroRNAs / metabolism
  • Middle Aged
  • Mutation
  • Signal Transduction

Substances

  • Immunoglobulin Heavy Chains
  • Immunoglobulin Variable Region
  • MicroRNAs

Grants and funding

The study was partially supported by grants from the Spanish Fondo de Investigaciones Sanitarias 02/1041 and FIS 09/01543; Caja de Burgos-Banca Cívica, Proyectos de Investigación del SACYL 106/A/06 and by the Acción Transversal del Cáncer project, through an agreement between the Instituto de Salud Carlos III (ISCIII), the Spanish Ministry of Science and Innovation, the Cancer Research Foundation of Salamanca University and the Redes de Investigación RTIIC (FIS). AR is fully supported by an Ayuda Predoctoral FIS de Formación en Investigación by the Spanish Fondo de Investigaciones Sanitarias. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.