Background and purpose: To explore a new positron emission tomography (PET)-based target concept for pediatric Hodgkin's lymphoma (PHL).
Patients and methods: For 10 patients, the planning target volume PTV1 was based on initial CT tumor extension and PTV2 on anatomy-related PET-positive lymph node levels after chemotherapy. The treatment techniques investigated (prescribed dose 19.8 Gy) comprised opposed-field (2F), intensity-modulated photon (IMXT), and single-field (PS) proton techniques. Treatment concepts were compared concerning dose-volume histogram (DVH) parameters and organ-equivalent doses (OED).
Results: The median PTV1 and PTV2 were 902 ± 555 cm(3) and 281 ± 228 cm(3). When using PTV2 instead of PTV1 for all techniques, the D(2%) of the heart was reduced from 14 to 9 Gy and the D(mean) of the thyroid from 16.6 to 2.7 Gy. Low- (20%), median- (50%), and high-dose volumes (80%) were reduced by 60% for the heart and bones using PTV2. PS reduced the high-dose volume of the lungs and the heart by up to 60%. IMXT increased the low-dose volumes and OED. PTV2 reduced OED by 54 ± 10% for all organs at risk.
Conclusion: PTV2 has a high impact on the treated volume and on sparing of organs at risk. The combination of an adaptive target volume definition with protons could contribute to future PHL treatment concepts.