Convergence of the ZMIZ1 and NOTCH1 pathways at C-MYC in acute T lymphoblastic leukemias

Cancer Res. 2013 Jan 15;73(2):930-41. doi: 10.1158/0008-5472.CAN-12-1389. Epub 2012 Nov 16.

Abstract

Activating NOTCH1 mutations are found in 50% to 60% of human T-cell acute lymphoblastic leukemia (T-ALL) samples. In mouse models, these mutations generally fail to induce leukemia. This observation suggests that NOTCH1 activation must collaborate with other genetic events. Mutagenesis screens previously implicated ZMIZ1 as a possible NOTCH1 collaborator in leukemia. ZMIZ1 is a transcriptional coactivator of the protein inhibitor of activated STAT (PIAS)-like family. Its role in oncogenesis is unknown. Here, we show that activated NOTCH1 and ZMIZ1 collaborate to induce T-ALL in mice. ZMIZ1 and activated NOTCH1 are coexpressed in a subset of human T-ALL patients and cell lines. ZMIZ1 inhibition slowed growth and sensitized leukemic cells to corticosteroids and NOTCH inhibitors. Gene expression profiling identified C-MYC, but not other NOTCH-regulated genes, as an essential downstream target of ZMIZ1. ZMIZ1 functionally interacts with NOTCH1 to promote C-MYC transcription and activity. The mechanism does not involve the NOTCH pathway and appears to be indirect and mediated independently of canonical PIAS functions through a novel N-terminal domain. Our study shows the importance of identifying genetic collaborations between parallel leukemic pathways that may be therapeutically targeted. They also raise new inquiries into potential NOTCH-ZMIZ1 collaboration in a variety of C-MYC-driven cancers.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Gene Expression Regulation
  • Genes, myc*
  • Humans
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Mice
  • Mice, 129 Strain
  • Mice, Inbred C57BL
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / genetics*
  • RNA-Binding Proteins
  • Receptor, Notch1 / genetics*
  • Receptor, Notch1 / metabolism
  • Signal Transduction
  • Transcription Factors / metabolism*

Substances

  • Intracellular Signaling Peptides and Proteins
  • NOTCH1 protein, human
  • RNA-Binding Proteins
  • Receptor, Notch1
  • Transcription Factors
  • ZMIZ1 protein, human
  • Zimp10 protein, mouse