Purpose: The purpose was to describe the design and fabrication of a driver suitable for magnetic resonance elastography (MRE) of the head and neck and to assess its performance in evaluating human parotid gland, lymph nodes and thyroid at 3.0 T.
Materials and methods: A head and neck driver was fabricated using a commercial transducer, headrest mould and piston extension. Driver performance was tested using a motion-sensitized spin-echo MRE pulse sequence. Six healthy volunteers and three patients (two metastatic nodes and one papillary carcinoma) were evaluated using MRE. Viscoelastic maps were computed to obtain storage modulus (G') and loss modulus (G") of the normal parotid and thyroid, metastatic node and thyroid cancer. Reproducibility was assessed by coefficient of variation.
Results: All subjects completed MRE examination without discomfort. Initial G' and G" values were as follows: normal parotid gland, 1.12 kPa and 0.48 kPa; thyroid, 0.58 kPa and 0.42 kPa; metastatic node, 0.66 kPa and 0.58 kPa; and thyroid cancer, 0.17 kPa and 0.28 kPa. Based on parotid data, the coefficient of variation for G' and G" was 4.7% and 9.8%.
Conclusion: A new MRE driver for head and neck was successfully implemented, and our initial results suggested the device was suitable for the mechanical assessment of tissues in the head and neck.
Copyright © 2013 Elsevier Inc. All rights reserved.