Importance of direct metal-π coupling in electronic transport through conjugated single-molecule junctions

J Am Chem Soc. 2012 Dec 19;134(50):20440-5. doi: 10.1021/ja308626m. Epub 2012 Dec 4.

Abstract

We study the effects of molecular structure on the electronic transport and mechanical stability of single-molecule junctions formed with Au point contacts. Two types of linear conjugated molecular wires are compared: those functionalized with methylsulfide or amine aurophilic groups at (1) both or (2) only one of its phenyl termini. Using scanning tunneling and atomic force microscope break-junction techniques, the conductance of mono- and difunctionalized molecular wires and its dependence on junction elongation and rupture forces were studied. Charge transport through monofunctionalized wires is observed when the molecular bridge is coupled through a S-Au donor-acceptor bond on one end and a relatively weak Au-π interaction on the other end. For monofunctionalized molecular wires, junctions can be mechanically stabilized by installing a second aurophilic group at the meta position that, however, does not in itself contribute to a new conduction pathway. These results reveal the important interplay between electronic coupling through metal-π interactions and quantum mechanical effects introduced by chemical substitution on the conjugated system. This study affords a strategy to deterministically tune the electrical and mechanical properties through molecular wires.