The bound coherent neutron scattering lengths of the oxygen isotopes

J Phys Condens Matter. 2012 Dec 19;24(50):505105. doi: 10.1088/0953-8984/24/50/505105. Epub 2012 Nov 21.

Abstract

The technique of neutron interferometry was used to measure the bound coherent neutron scattering length b(coh) of the oxygen isotopes (17)O and (18)O. From the measured difference in optical path between two water samples, either H(2)(17)O or H(2)(18)O versus H(2)(nat)O, where nat denotes the natural isotopic composition, we obtain b(coh,(17)O) = 5.867(4) fm and b(coh,(18)O) = 6.009(5) fm, based on the accurately known value of b(coh,(nat)O) = 5.805(4) fm which is equal to b(coh,(16)O) within the experimental uncertainty. Our results for b(coh,(17)O) and b(coh,(18)O) differ appreciably from the standard tabulated values of 5.6(5) fm and 5.84(7) fm, respectively. In particular, our measured scattering-length contrast of 0.204(3) fm between (18)O and (nat)O is nearly a factor of 6 greater than the tabulated value, which renders feasible neutron diffraction experiments using (18)O isotope substitution and thereby offers new possibilities for measuring the partial structure factors of oxygen-containing compounds, such as water.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.