Mucosal tissues are the primary route of transmission for most respiratory and sexually transmitted diseases, including human immunodeficiency virus (HIV). There is epidemiological evidence that genital mucosal inflammation leads to enhanced HIV type 1 (HIV-1) transmission. The objective of this study was to assess the influence of periodontal inflammation on oral HIV transmission using a nonhuman primate model of teeth ligature-induced periodontitis. Simian immunodeficiency virus (SIV) was nontraumatically applied to the gingiva after moderate gingivitis was identified through clinical and immunologic analyses (presence of inflammatory cytokines). Overall oral SIV infection rates were similar in the gingivitis-induced and control groups (5 infections following 12 SIV administrations for each), although more macaques were infected with multiple viral variants in the gingivitis group. SIV infection also affected the levels of antiviral and inflammatory cytokines in the gingival crevicular fluid, and a synergistic effect was observed, with alpha interferon and interferon-inducible protein 10 undergoing significant elevations following SIV infection in macaques with gingivitis compared to controls. These increases in antiviral and inflammatory immune modulators in the SIV-infected gingivitis macaques could also be observed in blood plasma, although the effects at both compartments were generally restricted to the acute phase of the infection. In conclusion, while moderate gingivitis was not associated with increased susceptibility to oral SIV infection, it resulted in elevated levels of cytokines in the oral mucosa and plasma of the SIV-infected macaques. These findings suggest a synergy between mucosal inflammation and SIV infection, creating an immune milieu that impacts the early stages of the SIV infection with potential implications for long-term pathogenesis.