Purpose: Duplex drugs are promising anticancer agents. After in vivo cleavage into active nucleoside analogues, they exert their anti-tumour activity with reduced toxicity and side effects. Here we evaluated the impact of two duplex drugs on the viability of hepatoblastoma (HB) cells lines and their toxicity against human fibroblasts.
Methods: The duplex drugs 2'-deoxy-5-fluorouridylyl-(3'-5')- 3'-C-ethynylcytidine (5-FdU(3'-5')ECyd) and 3'-C-ethynylcytidinylyl-(5'→1-O)-2-O-octadecyl-sn-glycerylyl-(3'-Ο→5')-2'-deoxy-5-fluorouridine (ECyd-lipid-5-FdU) were analysed in two HB cell lines (HUH6, HepT1) and fibroblasts by MTT assay. The treatment potential was compared to the single substances 2'-deoxy-5-fluorourindine (5-FdU), 3'-C-ethynylycytidine (ECyd) and an equimolar mixture of both. Cell cycle analyses were performed using flow cytometry after 7-AAD staining.
Results: Both duplex drugs achieve a potent cytotoxic effect at low μM concentrations, which was more pronounced than the mixture of ECyd + 5-FdU. Further, both substances exert toxicity on fibroblasts of tumour samples, with less toxicity in foreskin fibroblasts cultures. Cell cycle analyses revealed a shift towards apoptotic cells for both drugs in HB cells.
Conclusion: 5-FdU(3'-5')ECyd and ECyd-lipid-5-FdU exert a highly potent anti-tumoural effect on HB cells and might therefore be a treatment option in HB. Pharmacological formulations of both duplex drugs have to be evaluated in vivo to reduce possible side effects.